Discovering Better AAAI Keywords via Clustering with Community-Sourced Constraints

نویسندگان

  • Kelly Moran
  • Byron C. Wallace
  • Carla E. Brodley
چکیده

Selecting good conference keywords is important because they often determine the composition of review committees and hence which papers are reviewed by whom. But presently conference keywords are generated in an ad-hoc manner by a small set of conference organizers. This approach is plainly not ideal. There is no guarantee, for example, that the generated keyword set aligns with what the community is actually working on and submitting to the conference in a given year. This is especially true in fast moving fields such as AI. The problem is exacerbated by the tendency of organizers to draw heavily on preceding years’ keyword lists when generating a new set. Rather than a select few ordaining a keyword set that that represents AI at large, it would be preferable to generate these keywords more directly from the data, with input from research community members. To this end, we solicited feedback from seven AAAI PC members regarding a previously existing keyword set and used these ‘communitysourced constraints’ to inform a clustering over the abstracts of all submissions to AAAI 2013. We show that the keywords discovered via this data-driven, human-inthe-loop method are at least as preferred (by AAAI PC members) as 2013’s manually generated set, and that they include categories previously overlooked by organizers. Many of the discovered terms were used for this year’s conference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Blockmodeling for Online Advertising

Online advertising is market communication over the internet. This form of advertising has proven its importance in the golden digital age. In this work, we approach the business problem of improving the effectiveness of ad campaigns and targeting a wider range of online audience via discovering the intrinsic structures of the websites. We introduce a stochastic blockmodeling framework for disc...

متن کامل

Probabilistic Community Discovery Using Hierarchical Latent Gaussian Mixture Model

Complex networks exist in a wide array of diverse domains, ranging from biology, sociology, and computer science. These real-world networks, while disparate in nature, often comprise of a set of loose clusters(a.k.a communities), whose members are better connected to each other than to the rest of the network. Discovering such inherent community structures can lead to deeper understanding about...

متن کامل

A Better Strategy of Discovering Link-Pattern Based Communities by Classical Clustering Methods

The definition of a community in social networks varies with applications. To generalize different types of communities, the concept of linkpattern based community was proposed in a previous study to group nodes into communities, where the nodes in a community have similar intra-community and inter-community interaction behaviors. In this paper, by defining centroid of a community, a distance f...

متن کامل

Discovering Dynamic Logical Blog Communities Based on Their Distinct Interest Profiles

This paper addresses the problem of identifying dynamic logical blog communities based on the distinct interests shared by blogs in the communities. This paper is motivated by the facts that the blog space is highly dynamic both in the participating bloggers and in the interests/issues of concern to them in their blogs, and that many organizations are interested in identifying the evolution/eme...

متن کامل

Mining Query Subtopics from Questions in Community Question Answering

This paper proposes mining query subtopics from questions in community question answering (CQA). The subtopics are represented as a number of clusters of questions with keywords summarizing the clusters. The task is unique in that the subtopics from questions can not only facilitate user browsing in CQA search, but also describe aspects of queries from a question-answering perspective. The chal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014